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Abstract—In this paper we explore methods for learning
local image descriptors from training data. We describe a set
of building blocks for constructing descriptors which can be
combined together and jointly optimized so as to minimize the
error of a nearest-neighbour classifier. We consider both linear
and non-linear transforms with dimensionality reduction, and
make use of discriminant learning techniques such as Linear
Discriminant Analysis (LDA) and Powell minimization to solve
for the parameters. Using these techniques we obtain descriptsr
that exceed state-of-the-art performance with low dimensional-
ity. In addition to new experiments and recommendations for
descriptor learning, we are also making available a new and
realistic ground truth dataset based on multi-view stereo data.

Index Terms—image descriptors, local features, discriminative
learning, SIFT

I. INTRODUCTION

Progress in image feature matching improved rapidly falawv
Schmid and Mohr’s work on indexing using grey-value invafsa
[16]. This represented a step forward over previous apemto
invariant recognition that had largely been based on gedraét
entities such as edges and contours [17]. Another landnmeg&rp
in the area was the work of Lowe [18], [19] who demonstrated
the importance of scale invariance and a non-linear, edgee
descriptor transformation inspired by the ideas of Hubedl an
Wiesel [20]. Since then small improvements have resulteniy
due to improved spatial pooling arrangements that are more
closely linked to the errors present in the interest poirtéct&oon
process [11], [21], [22].

One criticism of the local image descriptor designs describ
above has been the high dimensionality of descriptors, (228
dimensions for SIFT). Dimensionality reduction technigjuean
help here, and have also been used to design features as well.

OCAL feature matching has rapidly emerged to becomg first attempt was PCA-SIFT [23], which used the principal
the dominant paradigm for recognition and registration iBomponents of gradient patches to form local descriptorsilStv

computer vision. In traditional vision tasks such as pamica
stitching [1], [2] and structure from motion [3], [4], it hdargely

this provides some benefits in reducing noise in the descspa
better approach is to find projections that actively disagrate

replaced direct methods due to its speed, robustness, &nd btween classes [24], instead of just modelling the totah da

ability to work without initialization.
It is also used in many recognition problems. Vector quamgiz
feature descriptors to finite vocabularies and using théogna

variance. Such techniques have been extensively studiddein
face recognition literature [25], [26], [27].
Our work attempts to improve on the state of the art in local de

of “visual words” has enabled visual recognition to scalto in scriptor matching by learning optimal low-level image ap@ns

the millions of images [5], [6]. Also the statistical propies of

using a large and realistic training dataset. In contragréwious

local features and visual words have been exploited by maagproaches that have used only planar transformations di 1]

researchers for object class recognition problems [7],[H]
However, despite the proliferation of learning techniqthest

jittered patches [12] we use actual 3D correspondencesnebta
via a stereo depth map. This allows us to design descriphaits t

are being employed for higher level visual tasks, the m@joriare optimized for the non-planar transformations and ihation
of researchers still rely upon a small selection of hand dodehanges that result from viewing a truly 3D scene. We note tha

feature transforms for the lower level processing. A goodey

Moreels and Perona have also proposed a technique for éaglua

of some of the more common techniques can be found in [1@D feature matches based on trifocal constraints [28]. Cankw

[11]. Some exceptions to this rule and good examples of el
feature learning include the work of Lepetit and Fua [12]pt&in

extends this approach by giving us the ability to generate ne
correspondences at arbitrary locations and also to reasout a

et al [13] and Babenko [14]. Lepetit and Fua [12] showed thgisibility.
randomized trees based on simple pixel differences couldnbe To generate correspondences, we |everage recent improt@me

effective low level operation. This idea was extended byt®no

in multi-view stereo matching [29], [30]. In contrast to pi@us

et al [13], who demonstrated a compelling scheme for objegpproaches [31], this allows us to generate correspondence

class recognition. Babenko et al. [14] showed that boostgd

be applied to learn point based feature matching represama
from a large training dataset. Another example of learnig |
level image operations is the Berkeley edge detector [1Bichy

rather than being optimized for recognition performance &

is designed to mimic human edge labellings.
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for arbitrary interest points and to model true interestnpoi
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A. Contributions
The main contributions of this work are as follows:



1) We present a new ground-truth dataset for descriptonieaeffects, so we estimate the best translation, rotation aadks
ing, making use of multi-view stereo from large 3D reconbetween the corresponding image regions by least squares.
structions. This allows us to optimize descriptors for real First, we check to see if the interest point is visible in the
interest point detections. We will be making this dataseteighbouring image using the visibility maps supplied b§][@G
available to the community. visibility map is defined over each neighbouring image, aache

2) We extend previous work in parametric and non-parametiiixel has the label 1 if the corresponding point in the rafeee
descriptor learning, and provide recommendations forr&utuimage is visible, and 0 otherwise). We then declare intgrestts
designs. that are detected within 5 pixels of position, 0.25 octaviescale

3) We conduct several new experiments, including reducirgnd = /8 radians in angle to be “matches”. Those falling outside
dynamic range to minimize the number of bits used by o@rx these ranges are defined to be “non-matches”. Interest point
feature descriptors (important for scalability) and ofitim detections that are in between these ranges are deemed to be
ing descriptors for different types of interest point (e.gambiguous and not used in learning or testing. We chosey fairl

Harris and DOG). small ranges for position, orientation and scale tolerancsuit
our intended applications in automatic stitching and $tm&cfrom
[I. GROUND TRUTH DATASET motion. However, for category recognition problems one hig

To generate ground truth data for our descriptor matchir‘fé]oose larger ranges that should result in more positicarignce

problems, we make use of recent advances in multi-view imaBHt less discriminative representat!ons. See Figures 123@
recognition and correspondence. Recent improvements de-wi X@mples of correspondences and image patches generatgel by

baseline matching and structure from motion have made #iposP'OC€SS:

ble to find matches and compute cameras for datasets cogaini

thousands of images, with greatly varying pose and illutidma I1l. DESCRIPTORALGORITHM

conditions [33], [34]. Furthermore, advances in multiwistereo ) -
have made it possible to reconstruct dense surface models foIn prewous wqu [3,1] we h.ave noted that many .e>.<|st|ng
such images despite the greatly varying imaging condit/agg dfescnptors described in the !lterature, while appearingteq
[30]. different, can be constructed using a common modular frasrlew

We view these 3D reconstructions as a possible source of trafOnsisting of processing stages similar to Figure 3. At eiage,
ing data for object recognition problems. Previous work &ded different candidate block algorithms (described below)yrbe

re-projections of 3D point clouds to establish correspocds swa_pped in and °‘4t to produce a new overall descr!ptor. In
between images, adding synthetic jitter to emulate theenoigdd't'on' some.ca}ndldates have free parameters t.hat werlfizst a
introduced in the interest point detection process. Thizageh, 1 order to maximize the performance of the descriptor asalevh
whilst being straightforward to implement, has the disazge Cetain of these algorithmic combinations give rise to faiigd

of allowing training data to be collected only at discreteations, 9€SCriptors but many are untested. Using this structucevallis
and fails to model true interest point noise. to examine the contr!butlon of each building plock in d_etsmbl

In this work, we use dense surface models obtained via stefdjain @ better covering of the space of possible algorithms
matching to establish correspondences between images NotOU" approach to learing descriptors is therefore to put to-
that because of the epipolar and multi-view constrainistest gether a combination of bqulng blocks gnd then optlmlze th
matching is a much easier problem than unconstrained 2DrieatParameters of these blocks using leaming to obtain the best
matching. We can thus generate correspondences via lerabst mgtch/no-match classification perfprmance. This corgrasth
matching and multi-view consistency constraints that mélvery Prior attempts to hand tune descriptor parameters and felps
challenging for wide baseline feature matching methodsatcm  Put €ach algorithm on the same footing so that we can obtain
We can also learn descriptors that are optimized for actad ( @1d compare best performances.
arbitrary) interest point detections, finding correspagdpoints ~ Figure 3 shows the overall learning framework for building
by transferring their positions via the depth maps. robust local image descriptors. The input is a set of imagehes,

We make use of camera calibration information and den¥dlich may be extracted from the neighbourhood of any interes
multi-view stereo data for three datasets containing o\@g01 Point detector. The processing stages consist of the foilgw
images provided by [34] and [30]. In a similar spirit to [3%je G-block Gaussian smoothing is applied to the input patch.
extract patches around each interest point and store tharame T-blocks We perform a range of non-linear transformations

dataset on disk for efficient processing and learning. Weatlet to the smoothed patch. These include operations such as
Difference of Gaussian (DOG) interest points with assecdiat angle-quantized gradients and rectified steerable filters,
position, scale and orientation in the manner of [19] (wepals and typically resemble the “simple-cell” stage in human
experiment with multi-scale Harris corners in Section VI-Ehis visual processing.
results in around 1000 interest points per image. S-blocks/E-blocks We perform spatial pooling of the
For each interest point detected, we compute the position, above filter responses. S-blocks use parametrized pool-
scale and orientation of the local region when mapped inth ea ing regions, E-blocks are non-parametric. This stage
neighbouring image. These parameters are solved for bys& lea resembles the “complex-cell” operations in visual pro-
squares procedure. We do this by creating a uniform, deris¢ po cessing.
sampling (once per pixel) within the feature footprint ire tfirst N-blocks We normalize the output patch to account for
image. These points are then transferred via the depth nathie photometric variations. This stage may optionally be
second image. In general the sampled points will not undargo followed by another E-block, to reduce the number of

exact similarity transform, due to depth variations andspective dimensions at the output.



Fig. 1. Generating ground truth correspondences. To genthra ground truth image correspondences needed as input @gorithms, we use multi-view
stereo data provided by Goesele et al [30]. Interest poietslatected in the reference image, and transferred to eéghboering image via the depth map.
If the projected point is visible, we look for interest pamithin a specified range of position, orientation and scahel declare these to be matches. Points
lying outside of twice this range are declared to be non-nestcihis is the basic input to our learning algorithms. Leftight: reference image, neighbour
image, reference matches, neighbour matches, depth map|ityigitp.

In general, the T-block stage extracts useful features fl@rata or non-linear transformations or classifiers are possihte lzave

like edge or local frequency information, and the S-blockgst been described previously [31]. In this paper we restrictobwice

pools these features locally to make the representati@ngitive to the following T-blocks which were found to perform well:

to positional shift. These stages are similar to the sinaplaplex [T1] We evaluate the gradient vector at each sample and

cells in the human visual cortex[36]. It's important thaeth- recover its magnitude: and orientatiorf. We then quantize the

block stage introduces some non-linearity, otherwise theah- orientation tok directions and construct a vector of lengtlsuch

ing step amounts to simply blurring the image. Also, the Nhatm is linearly allocated to the two circularly adjacent vector

block normalization is critical as many factors such astligfhy elementsi andi + 1 representing; < 6 < 6,1 according to the

reflectance and camera response have a large effect on tte¢ agiroximity to these quantization centres. All other elerseate

pixel values. zero. This process is equivalent to the orientation binnisgd in
These processing stages have been combined into 3 differ8HT and GLOH[11]. For the T1a-variant we use- 4 directions

pipelines, as shown in the figure. Each stage has trainabled for the T1lb-variant we use= 8 directions.

parameters, which are learnt using our ground truth datafset [T2] We evaluate the gradient vector at each sample and rectify

match/non-match pairs. In the remainder of this sectionwille its z andy components to produce a vector of length 4 for the

take a more detailed look at the parametrization of eachedeth T2a-variant{|V:| — Vz; | V| + Ve | Vy| — Vy; | Vy| + Vy }. This

building blocks. provides a natural sine-weighted guantization of oriéomainto
4 directions. Alternatively for T2b, we extend this to 8 ditiens
A. Pre-smoothing (G-block) by concatenating an additional length 4 vector using which

We smooth the image pixels using a Gaussian kernel igfthe gradient vector rotated through”.
9e p 9 [T3] We apply steerable filters at each sample location using

standgrd deviatiory; as a pre-processing stag.e to aIIov_v th%rientations and compute the responses from quadratuse[B&]
descriptor to adapt to an appropriate scale relative torttezast . P ; . .
with rectification to give a lengttt = 4n vector in a similar way

point scale. This stage is optional and can be included in the . . . . .
T-block processing (below) if desired. Fo the gradient computation described above so that thdiyosi

and negative parts of the quadrature filter responses atecpla

different vector elements. We tried two kinds of steeraliters:

B. Transformation (T-block) those based on a second derivatives provide broader scdle an
The transformation block maps the smoothed input patch orddentation tuning while fourth order filters give narronate and

a grid with one lengthk vector with positive elements perorientation tuning that can discriminate multiple oriditlas at

output sample. In this paper, the output grid was given timeesaeach location in the input patch. These filters were impleegen

resolution as the input patch, i.64 x 64. Various forms of linear using the example coefficients given in [37]. The variantseve



Fig. 2. Patch correspondences from the Liberty dataset.rdag: reference image and depth map (left column), generatied parrespondences (other
columns). Note the wide variation in viewpoints and scalestt@n rows: patches extracted from this dataset. Patcleescansidered to be “matching” if the
detected interest points are within 5 pixels in positior250octaves of scale and/8 radians in angle.
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Fig. 3. Schematic showing the learning algorithms exploredbfalding local image descriptors. Three overall pipeliee been explored: (1) uses
parametric parameter optimization, (‘S’ blocks) using Powdithimization as in [31]; (2) uses optimal linear projection&’(blocks), found via LDA as
in [35]; and a third approach (3) combines a stage of (1) falldvy the linear projection step in (2).



of the projection directions are mutually orthogonal [4[&#7],

T3g: 2nd order, 4 orientations; T3h: 4th order 4 orientadjorB8i: displays the symmetri@ x 3 arrangement with two position
2nd order, 8 orientations; and T3j: 4th order, 8 orientation parameters and three Gaussian widths.

[T4] We compute two isotropic Difference of Gaussians (DOG) [S4] We tried the same approach as S3 but instead used a polar
responses with different centre scales at each locationoby carrangement of Gaussian pooling regions with 17 or 25 sample
volving the already smoothed patch with three new Gaussiacentres. Parameters were used to specify the ring radiirensize
(one additional larger centre and two surrounds). The tweali of the Gaussian kernel associated with all samples in each ri
DOG filter outputs are then used to generate a length 4 vec{Bigure 4). The rotational phase angle of the spatial positg of
by rectifying their responses into positive and negativespas middle ring samples was also a parameter that could be l¢arne
described above for gradient vectors. We set the ratio legtdlee This configuration was introduced in [31] and named the DAISY
centre and surround space constants to 1.4. The pre-smgottdescriptor by [38].
stage sets the size of the first DOG centre and so we use one
222;:|gnal parameter to set the relative size of the secod D D. Embedding (E-block)

Embedding methods are prevalent in the face recognition

4 literature [24], [25], and have been used by some authors for

J ﬁh building local image descriptors [23], [35], [39]. Disciimative
4 O, linear embedding can identify more robust image descisptor
whilst simultaneously reducing the number of dimensiong W
summarize the different embedding methods we have used for

SL SIFT grd with S2 GLOH polar gl s3: 3x3 gidwih - S4 17 polar samples E-blocks below (see also the objective functions in Sectipn

OINCATWEIBN'S  and anguiar weights 1SS WeIONtS - Wil Gaussianvieights [E1] We perform principal component analysis (PCA) on the
Fig. 4. Examples of the different spatial summation blocks. $&=and S4, mDUtI V?Ctors' Thls. Is a non-discriminative technique andsed
the positions of the samples and the sizes of the Gaussian sionmanhes mostly for C‘?mpa“slon purposes. L . )
were parametrized in a symmetric manner. [E2] We find projections that minimize the ratio of in-class

variance for match pairs to the variance of all match paités T
is similar to Locality Preserving Projections (LPP) [25].
C. Spatial Pooling (S-block) [E4] We find projections that minimi;e the. rgtio.of. variance
. . . . between matched and non-matched pairs. This is similar ¢alLo

Many descriptor algorithms incorporate some form of h'ﬁjiscriminative Embedding [26]

\tisgirak:?:jm\?éctg]rsofli meciﬁléng rj\ti)gui \;Z :pglaI%eﬁggl;:Tulate [E6] We find projections that minimize the ratio of in-class
9 P 9 9 Y variance for match pairs to the total data variance. We call

summed vectors of length and these are concatenated to fornEh. . L .

- . . is generalized local discriminative embedding (GLDE)the
a descriptor oft N dimensions whereV € {3,9,16,17,25}. We - . oo . . .

. . . . number of classes is large, this objective function will baikar

now describe the different spatial arrangements of poaéing to [E2] and [E4] [35]
the different forms of weighting: = . [E3], [E5] and[E7] are the same as [E2], [E4] and [E6] with

[S1] We used a square grid of pooling centres (see Figure 4|)] o . . .

. L L - the addition of orthogonality constraints which ensuret gsch
with the overall footprint size of this grid being a parameiée
vectors from the previous stage were summed together Iipatiehl]
by bilinearly weighting them according to their distancenfr the ’
pooling centres as in the SIFT descriptor [19] so that thettwid
the bilinear function is dictated by the output sample spjpcive E. Post Normalization (N-block)
use sub-pixel interpolation throughout as this allows ror@us e yse normalization to remove the descriptor dependency on
control over the size of the descriptor grid. Note that adisé image contrast and to introduce robustness.
summation operations are performed independently for @ch g, parametric descriptors, we employ the SIFT style nor-
the k vector elements. . malization approach which involves range clipping degorip

[S2] We used the spatial histogramming scheme of the GLOjements. Our slightly modified algorithm consists of foteps:
descriptor introduced by Mikolajczyk and Schmid [11]. TO&es (1) Normalize to a unit vector, (2) clip all the elements of
a polar arrangemen_t of summing regions as shc_)wn in Figureife vector that are above a thresholdby computing v/ =
We used three variants of this arrangement with 3, 9 and Hin(ui,n), (3) re-normalize to a unit vector, and (4) repeat from

regions, depending on the number of angular segments in e, 2 yntil convergence or a maximum number of iterations
outer two rings (zero, 4, or 8). The radii of the centres of thg,g peen reached. This procedure has the effect of reduting t

middle and outer regions and the outer edge of the outermegiq namic range of the descriptor and creating a robust fancti
were parameters that were available for learning. Inputovec ¢, matching. The threshold was available for learning.

are bilinearly weighted in polar coordinates so that eadtiore |, yhe case of the non-parametric descriptors of Figure, 3(2)
contributes to multiple regions. As a last step, each of thalfi \ o normalize the descriptor to a unit vector.

vectors from theV pooling regions is normalized by the area of
its summation region.

[S3] We used normalized Gaussian weighting functions to sum
input vectors over local pooling regions arranged an<eB, 4 x 4 This section corresponds to Pipeline 1 in figure 3. The input
or 5 x 5 grid. The sizes of each Gaussian and the positions of tteethe modular descriptor is @& x 64 image patch and the final
grid samples were parameters that could be learned. Figur@utput is a descriptor vector dd = kN numbers wheré is the

IV. LEARNING PARAMETRIC DESCRIPTORS



T-block dimension andV is the number of S-block summationA. Objective functions of different embedding methods.

regions. . ~ Our E2 block attempts to maximize the ratio of the projected
We evaluate descriptor performance and carry out learniRgriance of allx; in the match patch pair set to that of the

using our ground-truth data sets consisting of match and nafifference vectorsc; — x;. Letting w be the projection vector,
match pairs. For each pair we compute the Euclidean distange can write this mathematically as follows:
between descriptor vectors and form two histograms of thises

for all true matching and non-matching cases in the data set. D (WTXi)Q
A good descriptor minimizes the amount of overlap of these Ji(w) = A 5- 2)
histograms. We integrate the two histograms to obtain an ROC Zz,;j:1 (w7 (xi — %))

curve which plots correctly detected matches as a fractioallo g jngition for this objective function is that in projém space,
true matches against incorrectly detected matches as 80ffacyye try to minimize the distance between the match pairs while
of all true non-matches. We compute the area under the RQEhe same time keeping the overall projected variance lof al
curve as a final score for descriptor performance and aim (@ciors in the match pair set as big as possible. This is airtol

maximize this value. Other choices for quality measures &g, | aplacian eigen-map adopted in previous works suches th
possible depending on the application but we choose ROC a[§&ality preserving projections [25].

as a robust and fairly generic measure. In terms of repoting  ajternatively, motivated by local discriminative embed-

_results on the test set, however, we choose to indicaterpeafce ding [26], the E4 block optimizes the following objectiventt
in terms of the percentage of false matches present when $5%;g;,.

all correct matches are detected. T (s, 1)
. - D 1—0 (w (x; — xj))
We jointly optimized parameter values of G, T, S, and N-bfock Jo(w) = ! 5 (©)
by using Powell's multidimensional direction set metho@][& 2,=1 (W (x; —x;))

maximize the ROC area. We initialized the optimization Wlt%y maximizing.J»(w), we are seeking the embedding space under

reasonable choices of parameters. . which the distances between match pairs are minimized aad th
Each ROC area measure was evaluated using one run OVerc}Q?ances between non-match pairs are maximized.

training data set. After each run we updated the parametefs a A thirg objective function (E6 blocks) unifies the above two
repeated the evaluation until the change in ROC area Wad-sm@ﬁjective functions under certain conditions [35]:

In order to avoid over-fitting we used a careful parametigraof

the descriptors using as few parameters as possible (typbed 1 ) (WTX_) 2
depending on descriptor type). Once we had determined aptim J3(w) = xi€S ! 5. (4)
parameters, we re-ran the evaluation over our testing dxtéos D=1 (WT(x; —x5))

obtain the final ROC curves and error rates. All three objective functions/y, Jo, andJs can be written in

matrix form as

V. LEARNING NON-PARAMETRIC DESCRIPTORS Wl A w
Ji(w) = —p2—. ®)
This section corresponds to Pipeline 2 in figure 3. In this W Bw
section, we attempt to learn the spatial pooling componént ¥ ere
the desc_npt_or pipeline vx_nthout committing to_ any partmul_ A Z(Zl»»)x-xT ©)
parametrization. To do this, we make use of linear embedding 1 i)
techniques as described in Section IlI-D. Instead of using n S J .
merical gradient descent methods such as Powell miniroizati Ay = D (xi—xp)(xi —x5) (7
optimize parametrized descriptors, the embedding methohig lij=0
directly for a set pf optimal _Iinear projections. The ;_)rcbjﬂ_b Ay = Z X%} (8)
output vector in this embedding space becomes the final image %8
descriptor. Although Pipeline 2 also involves parametess f
P AT i B o= 3 (ox)xi—xp)T (©)

T and N-blocks, these are learned independently using Powel
Minimization as described above. We leave the joint optatitn _ )
of these parameters for future work. In the following, for ease of presentation, we useo represent

The input to the embedding learning algorithms is a set 8 Of A1, A2 and A;. Setting the derivative of our objective

match/non-match labelled image pairs that have been pedes’unction (Equation 5) to zero gives

by different processing units (T-blocks), i.e.,

li]':].

oJ 2Aw(wIBw) — 2(w! Aw)Bw

ow (WwI'Bw)2 =0 (10)
S =1{xi =T(pi).xj = T(p;), lis}- @) which implies that the optimai is given by the solution to a
In Equation 1,p, is an input image patch7 (-) represents a generalized eigenvalue problem
composite set of different image processing units preseirte Aw — \Bw (11)

Section Ill, x, is the output vector off (-), andl;; takes binary
value to indicate if patchp; andp; are match; = 1) or non- where) = wl Aw/w!l Bw. Equation 11 is solved using standard
match (;; = 0). We now present the mathematical formulatiotechniques, and the first' generalized eigenvectors are chosen
of the different embedding learning algorithms. to form the embedding space.



E3, E5 and E7 blocks place orthogonality constraints on the
corresponding E2, E4 and E6 blocks, respectively. The mathe
matical formulation is quite straightforward: Suppose wavéh
already obtained — 1 orthogonal projections for the embedding,
ie.,

Wy = [wi,wa,...,Wr_1], (12)

to pursue thek'” vector, we solve the following optimization
blem: Fig. 5. The first 10 projections learned from normalized imagéchpes
problem: ; X ) b
in a match/non-match image patch set usifgw) with different power
T regularization rate [35]. From top to bottorn, takes the value of 0.2, 0.1,
w' Aw (13) 0.02 and 0, respectively. Notice that the projections becpnogressively

argmaxw e noisier as the power regularization is reduced.
s.t. wliwi =0 (14)
T _
wwa =0 (15) VI. EXPERIMENTS
(16) We performed experiments using the parametric and non-
wka_l =0. (17) parametric descriptor formulations described above, gusior

new test dataset. The following results all apply to Differe
of Gaussian (DOG) interest points. For experiments usingisia
corners, see Section VI-E. In each case we have compared to
Lowe’s original implementation of SIFT. Since SIFT perfam
descriptor sampling at a certain scale relative to the Bffee
of Gaussian peak, we have optimized over this scaling paeme
to ensure that a fair comparison is made (see Figure 6).
where For the results presented in this paper, we used three test
Q. = WiB~'w,. (19) sets (Yosemite, Notre Dame, and Liberty) which were obthine
by extracting scale and orientation normalizeétlx 64 patches
The optimalwy, is then the eigenvector associated with the largeatound DOG interest points as described in Section Il. Bijic
eigenvalue in Equation 18. We omit the details of the deiovat four training and test set combinations were used: Yosemite
of the solution here but refer readers to [27], [41]. Notre Dame, Yosemite—Liberty, Notre Dame—Yosemite, anttéNo
Dame—Liberty, where the first of the pair is the training 3et.
addition a “synthetic” training set was obtained which inmm
rated artificial geometric jitter as described in [31]. TiiaD sets
A common problem with the linear discriminative formulatio typically contained from 10,000 to 500,000 patch pairs depey
in Equation 5 is the issue of over-fitting. This occurs beeausn the application while test sets always contained 100p20(&.
projectionsw which are essentially noise can appear discrimindhe training and test sets contained 50% match pairs, and 50%
tive in the absence of sufficient data. This issue is exatedbanon-match pairs. During training and testing, we recomgpatié
by the high dimensional input vectors used in our experimennatch/non-match descriptor distances as the descri@osfor-
(typically several hundred to several thousands of dinersi mation varied, sweeping a threshold on the descriptor ristdo
To mitigate the problem, we adopt a power regularizatiort cogenerate an ROC curve. Note that using predefined match/non-
function to force the discriminative projections to lie lretsignal match pairs eliminates the need to recompute nearest raighb
subspace. To do this, we first perform eigenvalue decomgositin the 100,000 element test set, which would be computdtiona
for the B matrix in Equation 5, i.e.B = UAU?T. Here A is very demanding. In addition to presenting ROC curves, we giv
a diagonal matrix withA;; = \; being thei’" eigenvalue ofB  many results in terms of the 95% error rate which is the peércen
and\; > X2 > ... > \,. We then regularizeA by clipping its of incorrect matches obtained when 95% of the true matctes ar

By formulating the Lagrangian, it can be shown that the smfut
to this problem can be found by solving the following eigdoea
problem [27], [41]:

Mw = (I- B 'W,Q, 'WiL)B™'A)w = \w, (18)

B. Power regularization

diagonal elements against a minimal value where found (Section 1V).
N = iy Ar). 20
i = max(A, Ar) (20) A. Parametric Descriptors
We chooser such thaty_; ., A; accounts for a portiom of the  We obtained very good results using combinations of the-para
total power, i.e., metric descriptor blocks of Section Ill, exceeding the perfance
S A of SIFT by around 1/3 in terms of 95% error rates. We chose to
i= 7

r=min st. S N <a (21) focus specifically on four combinations that were shown teeha

=1 merit in [31]. These included a combination of angle quatiz

Figure 5 shows the top 10 projections learnt from a set gfadients (T1) or steerable filters (T3) with log-polar (S2)
match/non-match image patches with different power reqala Gaussian (S4) summation regions. Other combinations w&th T
tion rate o. The only pre-processing applied to these patchd&¢l, S1, S3 performed less well. Example ROC curves are shown
was bias-gain normalization. As we can clearly observeqasin Figure 7 and 8, and all error rates are given in Table | &dlds
decreases from 0.2 to O (top to bottom), the projections fneco show the 95% error rate with the optimal number of dimensions
increasingly noisy. given in parentheses).
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Fig. 6. Results for Lowe-SIFT descriptors: (a) shows thetsah for the optimal SIFT descriptor footprint using the &ity dataset. Note that the performance
is quite sensitive to this parameter, so it must be set cayefid) shows ROC curves when using this optimal patch scalimdjthe Yosemite dataset for
testing. We also tried using PCA and GLDE on the SIFT desmrgp(shown in the other curves). GLDE gave only small improvenreperformance (1%
error at 95% true positives) to Lowe’s algorithm, but subs#dy reduced the number of dimensions from 128 to 19. PCA giges a large dimensionality
reduction for only a small drop in performance.

half of the cases the combination of T3 and E-block learnieatb
SIFT. Table 11l shows the best results for each E-block ollef-a
block filters. LPP is the clear winner when trained on Yosemit
For Notre Dame the case is not so clear, and no one method
performs consistently well. The best results for each satesp
method are almost always using T3.
Fig. 9. Optimal summation regions are foveated and this is tEespi To investigate sensitivity to training data, we tested oe th
initialization with a rectangular arrangement in the cas&®f Liberty set using training on both Notre Dame and Yosemite.
For the non-parametric descriptor learning it seems that th
Yosemite dataset was best for training, whereas for thenpetrec
On three of the four datasets, the best performance wdescriptors the performance was comparable (within 1-2%) fo
achieved by the T3h-S4-25 combination, which is a combamati both datasets. In general the results from the E-block iegrn
of steerable filters with 25 Gaussian summation regionsxge@d are less strong and more variable than the parametric %-bloc
in concentric rings. We found that when optimized over ouechniques. Certain combinations, such as T3/LPP weretable
training dataset, these summation regions tended to agavera generate SIFT beating performance (e.g. 19.29% vs 26.10% on
foveated shape, with larger and more widely space summatiitre Yosemite/Notre Dame test case), but many other combirsat
regions further from the centre (see Figure 9). This stmectudid not. The principal advantage of these techniques is dhat
is reminiscent of the geometric blur work of [22], and similamensionality reduction is simultaneously achieved, satimaber
arrangements were independently suggested and named DAISYimensions is typically low (e.g. 32 dimensions in theeca$
descriptors by [38]. Rectangular arrays of summation regioT3/LPP).
were found to have lower performance and their results ate no

included here. C. Dimension reduced parametric descriptors
Note that the performance of these parametric descripsrs i
Parametric descriptor learning yielded excellent perforoe

uniformly strong in comparison to SIFT, but the downsideto§t . . . . - o
method is that the number of dimensions is very large (tylyicaw'th high dimensionality, whereas the non-parametric fewy
gave us a very small number of dimensions but with a slightly

several hundred). AP X :
inferior performance. Thus it seems natural to combine ehes
) _ approaches. We did this by running a stage of non-parametric
B. Non-Parametric Descriptors dimensionality reduction after a stage of parametric lisggrThis
The ROC curves for training on Yosemite and testing on Notrresponds to Pipeline 3 in Figure 3. Note that we did nenapt
Dame using Non-Parametric descriptors are shown in FigQre 1o jointly optimize for the embedding and parametric dqsoris,

To summarize the remaining results, we have created tab@though this could be a good direction for future work. The
showing the 95% error rates only. results are shown in Figure 11 and Table IV. This approacle gav
Table Il shows the best results for each T-block using thes the overall best results, with typically 1-2% less eritaint

scheme of Figure 3(2) over all subspace methods that we triggrametric S-blocks alone, and far fewer dimension80:40).
(PCA, LDE, LPP, GLDE and orthogonal variants). Also showdlthough LDA gave much better results than PCA when applied
are results for applying subspace methods to raw bias-gainraw pixel data [35], running PCA on the outputs of S-block
normalized pixel patches and gain normalized gradientss¥¢ée learning gave equal or better results to LDA. It may be tha#li®
that the T3 (steerable filter) block performs the best, #Wod slightly overfitting in cases where a discriminative reprgation
by T1 (angle-quantized gradients) and T2 (rectified grad)etn has already been found. For half the datasets, the bestsresre

S39(3x3) S316(4xd) S325(x5)  S417
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Fig. 7. ROC curves for parametrized descriptors. TrainindNoire Dame
and testing on Yosemite.

Fig. 8. ROC curves for parametrized descriptors. TrainindNotre Dame
and testing on Liberty.

Train Test T1c-S2-17| T3h-S4-25| T3h-S2-17| T3j-S2-17 SIFT

Yosemite Notre Dame|| 17.90(272) | 14.43(400) | 15.44(272) | 15.87(544) || 26.10(128)

Yosemite Liberty 23.00(272) | 20.48(400) | 22.00(272) | 22.28(544) || 35.09(128)

Notre Dame| Yosemite 18.30(272) | 16.35(400) | 16.56(272) | 15.91(544) | 28.50(12s)

Notre Dame| Liberty 22.76(279) | 21.85(400) | 22.05(272) | 21.98(544) || 35.09(128)

Synthetic Liberty 29.50(272) | 24.25(400) | 25.74(272) | 32.36(544) | 35.09(108)
TABLE |

PARAMETRIC DESCRIPTOR RESULTS95%ERROR RATES ARE SHOWNWITH THE NUMBER OF DIMENSIONS IN PARENTHESIS

normalized| normalized
Training Set| Test Set pixels gradients T1 T2 T3 T4 SIFT
Yosemite Notre Dame 37.17(14) 32.09(15) 25.68(24) 27.78(33) 19429(32) 3537(28) 26'10(128)
Yosemite Liberty 56.33(14) 51.63(15) | 38.55(24) | 41.10(20) | 31.10(32) | 47.T4(28) || 35.09(128)
Notre Dame| Yosemite 43.37(97) 38.36(19) | 33.59(21) | 33.99(40) | 31.27(19) | 42.39(27) || 28.50(128)
Notre Dame leerty 55.70(27) 52.62(17) 41.37(24) 43.80(15) 36.54(19) 50.63(27) 35'09(128)
SynthetiC Notre Dame 37.85(15) 39.15(24) 24.47(32) 24.47(32) 22.94(30) 34'41(28) 26'10(128)
TABLE Il
BESTT-BLOCK RESULTS OVER ALL SUBSPACE METHODS
Training | Test PCA GLDE GOLDE LDE OLDE LPP OLPP SIFT
Yosemite | Notre D. 40.36(29) 24'20(28) 26.24(31) 24.65(31) 25.01(27) 19.29(32) 23‘71(31) 26'10(128)
Yosemite | Liberty 53.20(29) || 35.76(28) | 43.35(31) | 34.97(31) | 40.15(27) | 31.10(32) | 39.46(31) || 35.09(128)
Notre D. | Yosemite 45'43(61) 32.53(45) 34.61(25) 31.27(19) 33.38(20) 33'19(46) 35.04(17) 2850(128)
Notre D. | Liberty || 516367 || 41.66(u5) | 40.75(15) | 36.54(19) | 39.9520) | 42.68(46) | 41.46(17) || 35.09(128)
SynthetiC Notre D. 43'78(66) 24.04(29) 26.25(29) 24.86(26) 26.10(33) 22.94(30) 26.05(34) 26.10(128)
TABLE Il

BEST SUBSPACE METHOD OVER ALLT-BLOCKS.

obtained using PCA on T3h-S4-25 (rectified steerable filts  http://www.cs.ubc.ca¢mbrown/patchdata/tutorial.pdf.

DAISY-like Gaussian summation regions) and for the othdf,ha We also used this approach to perform dimensionality récluct
the best results were from T3j-S2-17 plus PCA (rectifiedratde on SIFT itself, the results are shown in Figure 6(b). We wéle a
filters and log-polar GLOH-like summation regions). The tbeso reduce the number of dimensions significantly (to aroudy 2
results here gave less than half the error rate of SIFT, wddogit but the matching performance of the LDA reduced SIFT descrip
1/4 of the number of dimensions. See “best of the best” table ¥rs was only slightly better than the original SIFT desknip

~10
To aid in the dissemination of these results, we have cr‘a-l/0 error).

ated a document detailing parameter settings for the most . ] ) . ]
successful DAISY configurations, as well as details of th- Comparisons with Synthetic Interest Point Noise
recognition performance/computation time tradeoffs.sThan Previous work [31], [12] used synthetic jitter applied toaige
be found on the same website as our patch datasqiatches in lieu of the position errors introduced in intepsnt
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Testing of linear discriminant descriptors traired Yosemite and tested on Notre Dame. The optimal number of dio/ensind the associated

95% error rate is given in parentheses. NSSD: Normalized sprared difference computed on the output of the T-block diregithout embedding.

Training | Test PCA GLDE GOLDE LDE OLDE LPP OLPP SIFT

Yosem|te L|berty 1827(29) 2692(32) 1988(49) 2520(60) 1870(71) 2539(32) 2033(36) 3509(128)

Notre D. | Yosemite 13'55(36) 25'25(87) 15'67(67) 21.78(35) 15.04(99) 22‘30(48) 15'56(86) 28‘50(128)
TABLE IV

BEST SUBSPACE METHODS FOR COMPOSITE DESCRIPTORS
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Train Test Parametric| Non-parametricic Composite SIFT

Yosemite Notre Dame|| 14.43490) 19.29 39) 11.98(29) || 26.10(12g)

Yosemite Liberty 20.48400) 31.10(32) 18.27(39) || 35.09(12s)

Notre Dame| Yosemite 15.91(544) 31.27(19) 13.55(36) || 28.50(128)

Notre Dame leerty 21.85(400) 36.54(19) 16485(36) 35'09(128)
TABLE V

“BEST OF THE BEST RESULTS

detection. In order to evaluate the effectiveness of thistesy,

we tested a number of descriptors that were trained on aedatas 35 Tahsazs
with synthetic noise applied ([31]). T%]g%g -
For results, see the last rows of tables I, Il and Ill. Here,
“synthetic” means that synthetic scale, rotation and pwsiitter g .
noise was applied to the patches, although the actual patzh d % o
was sampled from real images as in [31]. For the parametric 5 2
Ll

descriptors, there is a clear gain of 5-10% from trainingngshe
new non-synthetic dataset. For the LDA based methods smalle 20
gains are noticeable.

15
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E. Learning Descriptors for Harris Corners Normalization Threshold Ratio

Using our multi-view stereo ground truth data we can easi ig. 13. Change in error rates as the normalization clipgingshold is varied
create optimal descriptors for any choice of interest poiigt Of Parametric descriptors. The threshold was set oD wherer is the
. ratio and D is the descriptor dimensionality. Unit: unit length normatian
demonstrate this, we also created a dataset of patchesden(fiioyt clipping.
on multi-scale Harris corner points (see Figure 12). The lef
column shows the projections learnt from Harris corners thed
right column from DOG interest points, for normalized image L .
patches. The projections learnt from the two different gypé C- Minimizing Bits
interest points share several similarities in appearaftey For certain applications, such as scalable recognitiois, iih-
are all centre focused, and look like Gaussian derivatiiég [ portant that descriptors are represented as efficientlyoasilpe.
combined with geometric blur [22]. We also found that theesrd A natural question is: “what is the minimum number of bits
of the performance of the descriptors learnt from the diifer required for accurate feature descriptors?”. To addressqtes-
embedding methods are similar to each other across the tige déion we tested the recognition performance of our paramesdri
sets. descriptors as the number of bits per dimension was reduoed f
8 to 1. The results are shown in Figure 14 for the parametric
descriptors. Surprisingly, there seems to be very littleelfi¢ to
F. Effects of Normalization using any more than 2 or 3 bits of dynamic range per dimension,
As demonstrated in [35], the post-normalization step isy vehich suggests that it should be possible to create locagema
important for the performance of the non-parametric dpgmrs  descriptors with a very small memory footprint indeed. Ireon
learnt from synthetically jittered data-set. We observenailar ~case (T1c-S2-17), the performance actually degradedtlsfligh
phenomenon in our new experiments with the new data. more bits were added. It could be that in this case quartizati
The higher performance of the parametric descriptors whéaused a small noise reduction effect. Note that this effext
compared to the non-parametric descriptors is in some p&rpall (1% in error rate), and not shown for the other deserpt
attributable to the use of SIFT-style clipping normaligativer- Where the major change in performance came from 1 to 2 bits per
sus simple unit-length normalization for these. Since patsc dimension, which gave around 16% change in error rate. Whils
descriptors maintain a direct relation between imageesgaw it would also be possible to quantize bits for dimension cedu
descriptor coefficients compared with coefficients afteare- (émbedded) descriptors, a variable number of bits per dsfoan
duction, SIFT-style clipping, by introducing a robustn@ssction, would be required as the variance on each dimension carr diffe
can mitigate differences due to spatial occlusions andcshiag ~—Substantially across the descriptor.
which affect one part of the descriptor and not another. For
this reason applying SIFT-style normalization prior to dimsion VII. LIMITATIONS
reduction seems appropriate. _ - Here we address some limitations of the current method and
Figure 13 shows the effect of changing the threshold of alipp suggest ideas for future work.
for SIFT normalization. Error rates are significantly inyped
when the clipping threshold are equal to arounél/+/D when o
tested on a wide range of parametric descriptors with difier A- Repetitive image structure
dimensionality. This graph shows the drastic reductionrimre ~ One caveat with our learning approach scheme is that distinc
rate compared with simple unit normalization. 3D locations aredefinedto be different classes, when in the
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32 oS T @) — . l_Jse_non-Iinear fiIter_respon;esS_ome form_ of non-linear
30} T3h-S4-25 (400) ] filtering before spatial pooling is essential for the best
2 | T%}g%g gﬁg = performance. Steerable filters work well if the phase is kept
6l Rectified or angle-quantized gradients are also a good and
S simple choice.
% 24 o Use LDA for discriminative dimension reductions LDA
5 221 I can be used to find discriminative, low dimensional descrip-
20 b 1 tors without imposing a choice of parameters. However, if a
\ discriminative representation has already been found, PCA
can work well for reducing the number of dimensions.
14 ) ) ) ) ) ) « Normalization Thresholding normalization often provides a
1 2 3 4 5 6 7 8 large boost in performance. If dimension reduction is used,
Number of hits per dimension normalization should come before the dimension reduction
Fig. 14. Results of limiting the number of bits in each desoriglimension. block.
Not many more than 2 bits are required per dimension to retairod gaor
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Fig. 12. Comparison of projections on patches centred onidHeorner points (left column), and DOG points (right colunmespectively. From top to the

bottom, we present projections learnt using the embeddinckblof E2, E3,
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True Negative Pairs

Some of the false positive, false negative, truetpesand true negative image patch pairs when testing on theNmre Dame dataset using

E-blocks learnt from the new Yosemite dataset. We used a catiainof T3 (steerable filters) and E2 (LPP) in this experimé&ach row shows 6 pairs of
image patches and the two image patches in each pair are shaha same column. Note that the two images in the false positive gee indeed obtained

from different 3D points but their appearances look sunpgily similar.
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